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Beyond Storage Capacity in a Single Model Neuron:
Continuous Replica Symmetry Breaking
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A single McCulloch�Pitts neuron, that is, the simple perceptron is studied, with
focus on the region beyond storage capacity. It is shown that Parisi's hierarchi-
cal ansatz for the overlap matrix of the synaptic couplings with so called con-
tinuous replica symmetry breaking is a solution, and as we propose it is the
exact one, to the equilibrium problem. We describe some of the most salient
features of the theory and give results about the low temperature region. In
particular, the basics of the Parisi technique and the way to calculate thermo-
dynamical expectation values is explained. We have numerically extremized the
replica free energy functional for some parameter settings, and thus obtained the
order parameter function, i.e., the probability distribution of overlaps. That
enabled us to evaluate the probability density of the local stability parameter.
We also performed a simulation and found a local stability density closer to the
theoretical curve than previous numerical results were.
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1. INTRODUCTION

In his seminal paper Hopfield(1) reformulated Little's model(2) of auto-
associative memory in terms of an energy function. By this act, the field of
the statistical mechanics of neural networks was plowed and sown in, and
proved itself since then remarkably fertile. The network is an intercon-
nected set of McCulloch�Pitts neurons, (3) the latter being perhaps the
biologically least realistic model of a nerve cell. In its simplest version the
model neuron can be in one of only two states, ``firing'' or ``quiescent,'' it
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is nonlinear, and admits a large number of connections from other units.
Despite the oversimplification in its node cells, the network can exhibit
complex behavior and functions as a reasonable model of content
addressable memory. From the practical viewpoint, however, artificial
neural networks are generically not superior to other methods in the task
of storage and associative retrieval.(4, 5)

An important ingredient of this type of models of neural networks is
what is called in statistical mechanics quenched disorder. For example, in
the Little�Hopfield model the synaptic coupling strengths, made up of
random numbers by the Hebb rule, (6, 5) can be held fixed for the duration
of the neural dynamical process. This is the basis for the analogy between
spin glass models, the archetypical example of a many-body problem with
quenched disorder, and neural networks.(6, 7) Methods borrowed from the
theory of spin glasses, in particular from the infinite range interaction
Sherrington�Kirkpatrick model, yielded a harvest of results on a variety of
neural model systems, as well as on other problems whose motivation came
from outside of physics but could be formulated as disordered statistical
mechanical systems.(5�7)

It is safe to say that the technique inherited from spin glass theory and
the most widely used in the statistical mechanical approach to neural
networks in equilibrium is the replica method.(6) It was first applied
thoroughly for infinite range interaction spin glasses, thus it is especially
suited for networks where neurons have a large number of connections. In
its simplest version, with so called replica symmetry, it can be straightfor-
wardly adopted to many a neural problem.(5)

Another family of artificial neural networks consists of layered feed-
forward networks, (8) which accept a number of inputs and for a given set
of couplings produce the output as a function of the inputs. Such networks
were introduced for the purpose of generalization, i.e., rule extraction, from
examples of input�output pairs. Then the a priori unknown target rule is
to be reconstructed by adaptive changes in the couplings, called training.
Since the introduction of the backpropagation algorithm(9) for that pur-
pose, feedforward networks found wide usage.(5, 10, 11)

The statistical physics of neural modeling gained an impetus of lasting
effect from the work by Gardner and Derrida(4, 12) on the storage problem
of a single neuron, called also simple perceptron in that context. This is the
simplest version(13) of feedforward networks. While in the Little�Hopfield
statistical mechanical system the quenched variables are the couplings and
a microstate is a configuration of neural states, the roles in feedforward
networks are reversed. Now the space of synaptic couplings is considered
as the configuration space within Boltzmannian thermodynamics and the
examples appear as quenched parameters. The error for one example
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measures the difference between the actual output of the network and the
required output. The errors on all training examples add up to form the
Hamiltonian, i.e., the cost function, of the statistical mechanical model.
Within the canonical statistical mechanical approach the temperature plays
its usual roles. On the one hand, it is the Lagrange multiplier associated
with a preset value of the error, on the other hand, it is the amplitude of
noise if a gradient-descent-like dynamics of the couplings is used so as to
reach optimal configuration. The thermodynamical limit is achieved by
admitting a large number of adjustable couplings, but for that it is not
necessary to have many neurons. The approach of Gardner and Derrida
was successful in what is called equilibrium learning, when a Hamiltonian
can be associated with the problem. However, statistical physical methods
are proving themselves useful also in studying off-equilibrium learning
algorithms.(14)

A central quantity of a feedforward network is its storage capacity,
i.e., how many random input�output examples the network can reproduce
without error. In terms of the statistical mechanical approach this is in its
original formulation a zero temperature problem. The subspace of
couplings that reproduce a given set of patterns is called version space, its
volume, related to the ground state (T=0) entropy, vanishes beyond
capacity. Since the statistical mechanical solution of the region below
capacity of a single neuron by Gardner and Derrida(4, 12) a number of
results have been obtained about storage properties of feedforward
networks, see for example refs. 11, 15�18. Nevertheless, if the task is to min-
imize the number of incorrectly stored examples, beyond capacity the
problem has not been solved. Technically this is because below capacity for
completely random examples replica symmetry holds, while beyond it no
finite replica symmetry breaking scheme yields thermodynamically stable
solution.(19)

In the present paper we reconsider the problem of storage of random pat-
terns, technically generalize Parisi's solution of the Sherrington�Kirkpatrick
model, and obtain beyond capacity a phase reminiscent to the frustrated
ground state of the Sherrington�Kirkpatrick model. That phase continues
for T>0 into the analog of the low temperature, or Parisi, phase of the
spin glass.

Our work is motivated not only by the problem of storing random
patterns. Generalization has also been successfully analyzed by statistical
mechanical methods, see refs. 10, 20 for reviews. The storage problem
below capacity is analogous to equilibrium learning of a learnable task,
where the network is compatible with all possible examples, there is no
frustration in either systems. For instance, equilibrium generalization
properties of the perceptron when the examples are generated by another
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one, can be understood for arbitrary number of examples within replica
symmetry.(21) However, a given feedforward network may be unable to
reproduce a complicated target function on all possible examples.(10) If the
target is unlearnable then the network is presumed to get into a frustrated
phase if a sufficiently large number of examples are used. Thus the proper-
ties of a network beyond capacity are of foremost interest from the view-
point of rule extraction as well.

The single neuron may be considered as the hydrogen atom of neural
problems and studied for its own interest. It is the unit of the Little�Hop-
field network, where the symmetry in the couplings has been given up and
the couplings of different neurons are considered as independent. As to a
feedforward network, even if the whole network operates without error, its
units may still be strained beyond their individual capacities.(15) Thus the
description of a single neuron beyond its storage capacity is of importance
also from the viewpoint of networked neurons. Furthermore, a close anal-
ogy exists between the behavior of model neurons beyond capacity and the
glassy, frustrated, phase of disordered spin systems.(6, 7, 22, 23, 19, 24) There-
fore, the understanding of the way a single neuron works may have
ramifications beyond the field of artificial neural networks.

We firstly review in Section 2 the statistical mechanics of storage,
recall the basic thermodynamical quantities and the formula for the replica
free energy of a single neuron. In Section 3 we summarize the main
ingredients of Parisi's approach and obtain the free energy functional that
we propose describes the equilibrium problem. This way some background
is given to our previous communication, (24) wherein we identified a spin
glass phase of Parisi type in the high temperature limit. The recipe for the
calculation of expectation values by means of Green functions is explained
in Section 4, producing among other the formulas for the local stability dis-
tribution and the stationarity conditions. Section 5 is devoted to the scaling
for low temperatures, enabling us to put the extremization of the free
energy functional on a computer, and in the end a simulation is discussed.

2. THE STORAGE PROBLEM AND ITS REPLICA FREE
ENERGY

The model neuron, or perceptron, under consideration is(3, 8)

!=sign(h) (2.1a)

h=N &1�2 :
N

k=1

JkSk (2.1b)
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where J is the synaptic coupling vector, S the input and ! the output.
Patterns are given as input�output data,

[S +, ! +]M
+=1 (2.2)

In the simplest setup the S +
k s are independently drawn from any distribution

with unit variance and zero average, and ! +=\1 with equal probability.
We introduce the local stability parameter as

2 +=h +! + (2.3)

where h + is given by (2.1b) with S +
k . If the neuron generates ! + in response

to S +, i.e., 2+>0, then we say that the + th pattern is stored. If 2 + is a large
positive number then high stability of storage against changes in either the
couplings or the inputs can be assumed. Large stability is associated with
large basin of attraction in memory networks.(5) Given the ensemble of
patterns, the local stability parameter obeys some distribution \(2).(25) If
the number of patterns M is of order N then it is useful to introduce the
relative number of examples

:=M�N (2.4)

called also load parameter. Since an overall positive factor of J does not
change the output, we set the norm of J to - N, expressed by the prior
distribution

w(J)=CN $(N&|J|2) (2.5)

This is called spherical constraint. The factor CN normalizes w(J) to unity,
it has no thermodynamical significance besides setting the zero point of
the entropy scale. Given the distribution of patterns and the length of J it
can be easily seen that the normalization in (2.1b) results in h values of
typically O(1).

Storage with minimal error can be formulated as an optimization task
by our introducing an error measure. If we treat all patterns in the same
way we obtain what is called the equilibrium problem. The associated
Hamiltonian, or cost function, is

H= :
M

+=1

V(2 +) (2.6)

where the potential V(2 +) gives the error on a single pattern S +, ! +.
Obviously, V( y)=0 for y>0 in the original storage problem. One can
also impose a bound } for the local stability, i.e., V( y) is set to be zero for
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y>}, if }>0 this is obviously stricter than the original storage criterion.
Generically, V( y) should be monotonically decreasing for y<}. In this
paper specific results will be presented on the error counting, or Gardner�
Derrida, (4, 12) potential

V( y)=%(}& y) (2.7)

where %( y) is the Heaviside function. Given the potential (2.7) the aim is
to minimize the number of patterns whose stability is below the bound }.
In the theoretical framework we shall keep the general form V( y).

The partition function of the optimization task is

Z=| d NJ w(J) exp \&; :
M

+=1

V(2 +)+ (2.8)

with ;=1�T. Quenched average, ( } } } ) qu , is defined as the mean over the
patterns. We deal with the idealized equilibrium of the system, when for
large N the free energy, the energy, and the entropy are assumed to
approach their quenched average. This property of self-averaging was
proved rigorously only in special cases, see for example ref. 26, but it is the
widely used basis in studies of the equilibrium thermodynamics of disor-
dered systems.(6)

The replica method(6, 7) consists in writing the mean free energy per
coupling as

f =& lim
N � �

( ln Z) qu

N;
= lim

N � �
lim
n � 0

1&(Zn)qu

nN;
(2.9)

Denoting the thermal average with the Boltzmann weight in (2.8) by
( } } } ) th the mean error per pattern can be written as

==((V(2)) th) qu=
1
:

�;f
�;

(2.10)

The entropy is

s=;(:=& f ) (2.11)

For T=0 and ==0 the volume of version space, i.e., the space of couplings
that perfectly reproduce the examples is obtained as 0=exp(Ns). In
general, Ns has the usual meaning of the logarithm of the volume with
given error =.
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Introducing the overlap matrix Q of synaptic vectors

[Q]ab#qab=
1
N

:
N

k=1

JakJbk (2.12)

where the replica indices a, b go from 1 to n, we can express the free energy
as the result of the minimization of the replica free energy(25, 22, 24)

f = lim
n � 0

1
n

min
Q

f (Q) (2.13a)

f (Q)=fs(Q)+:fe(Q) (2.13b)

fs(Q)=&(2;)&1 ln det Q (2.13c)

fe(Q)=&
1
;

ln |
d nx d ny

(2?)n exp \&; :
n

a=1

V( ya)+ixy &
1
2

xQx+ (2.13d)

The subscripts s and e stand for entropic and energy-like terms. The
entropic contribution (2.13c) arises because of the spherical constraint and
the definition (2.12), it is indeed independent of the potential, while (2.13d)
depends on it.

A central role is played by the probability density for the local
stabilities(25, 22)

\(2)=(($(2&h1!1)) th) qu (2.14)

where (2.1b) is understood. Due to the symmetry of the Hamiltonian with
respect to the permutation of patterns we could choose +=1 for con-
venience. It will turn out to be useful to interpret the integrand in (2.13d)
as an effective Boltzmann weight and denote the average over this measure
as

(( } } } )) (2.15)

where the n � 0 limit is implied. A straightforward replica calculation
shows (see ref. 27 for a pedagogic presentation) that the local stability dis-
tribution can be rewritten as

\(2)=(($(2& y1))) (2.16)

Here the subscript could be any replica index, for convenience we chose 1.
Comparison with (2.14) allows an intuitive interpretation for the replica
average (( } } } )) , namely, this corresponds to the combined average over
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thermal and quenched fluctuations. From (2.14) and (2.16) it follows that
the combined thermal and quenched average in (2.10) boils down to

==((V( y1)))=| dy \( y) V( y) (2.17)

The free energy (2.13) was calculated within the replica symmetric
ansatz for the error counting potential (2.7) and the capacity, i.e., the maxi-
mal : with ==0 at T=0 was determined in refs. 4 and 12. It has been
shown that beyond capacity the replica symmetric solution is thermo-
dynamically unstable.(28) One(22, 23) and two(19) step replica symmetry
breaking solutions were presented, while ref. 19 proved that no finite step
symmetry breaking ansatz can possibly be thermodynamically stable. We
presented in ref. 24 a variational free energy functional without derivation
that incorporated continuous replica symmetry breaking, but gave concrete
results only in the high temperature, large : limit. In what follows we
provide some background to the general theory and in the end properties
of the ground state (T=0) beyond capacity will also be described.

3. THE PARISI SCHEME

In this section we show how to evaluate the replica free energy fe(Q)
of (2.13d) within Parisi's ansatz. The R step replica symmetry breaking
form is(29)

Q= :
R+1

r=0

(qr&qr&1) Umr
�In�mr

(3.1)

where k subscripts k-dimensional matrices, Ik is the identity operator, all
elements of Uk equal 1, � marks the direct product, and

q&1=0�q0�q1 } } } �qR�qR+1=1 (3.2a)

mR+1=1�mR�mR&1 } } } �m1�m0=n (3.2b)

where the integer mr is a divisor of mr&1 . The n � 0 limit can be performed
smoothly if instead of mr we use xr=(n&mr)�(n&1) for parametrization.
Thus for arbitrary n>0 we have the ordering

xR+1=1�xR�xR+1 } } } �x1�x0=0 (3.3)

We consider the xrs fixed along the n � 0 limiting process, whence follows
the formal n-dependence of the mr(n)s, and for n=0 we get xr=mr(0). The
inspection of the first few R=0, 1, 2 cases(4, 22, 23, 19) allows, in the spirit of

686 Gyo� rgyi and Reimann



Parisi's, (29) the generalization of the energy term (2.13d) in the replica free
energy to arbitrary R as

fe(q, x )= lim
n � 0

1
n

fe(Q)

=&
1

;x1
| Dz0 ln | Dz1 _| Dz2 } } } _| DzR+1

_exp {&;V \ :
R+1

r=0

zr - qr&qr&1+=&
xR�xR+1

} } } &
x1 �x2

(3.4)

where

Dz=
dz e&1�2 z2

- 2?
(3.5)

This is the analog of Parisi's formula for the Sherrington�Kirkpatrick
model, Eq. (11) in ref. 29; a comprehensive derivation will be presented
elsewhere.(27) The energy term (2.13d) has become a function of the
parameters in (3.2a) and (3.3). The evaluation of (3.4) can be done by
iteration,

�r&1( y)=| Dz �r( y+z - qr&qr&1 )xr �xr+1 (3.6a)

�R+1( y)=e&;V( y) (3.6b)

where xR+2=1 is understood. Then the sought free energy term is
obtained as

fe(q, x )=&
1

;x1
| Dz ln �0(z - q0 ) (3.7)

where q=(q0 ,..., qR) and x=(x1 ,..., xR).
The above iteration can be redressed as a partial differential equation.

Parisi's order parameter function x(q) is a concatenation of the q and x as

x(q)= :
R

r=0

(xr+1&xr) %(q&qr) (3.8)

where x&1=0. Next we introduce �(q, y) such that at the discontinuities

�(q+0
r , y)=�r( y) (3.9a)

�(q&0
r , y)=�(q+0

r , y)x(qr
&0)�x(qr

+0) (3.9b)
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that is, �(q, y)1�x(q) is continuous in q. Furthermore, along the plateau in
the open interval (qr&1 , qr)

�(q, y)=| Dz �(q&0
r , y+z - qr&q) (3.10)

It is easy to show that the field so defined satisfies the partial differential
equation (PDE)

�q �(q, y)=&
1
2

�2
y�(q, y)+

x* (q)
x(q)

�(q, y) ln �(q, y) (3.11a)

�(1, y)=e&;V( y) (3.11b)

which evolves from q=1 to q=0. Indeed, along the plateaus x* (q)=0 when
only the first term on the r.h.s. of (3.11a) remains, thus producing (3.10).
Near jumps of x(q) the second term dominates, and at a fixed y the result-
ing ordinary differential equation in the variable q is separable. Hence it
follows that �(q, y)1�x(q) is continuous in q, thus (3.9b) is recovered. An
equivalent field can be defined by

f (q, y)=&
ln �(q, y)

;x(q)
(3.12)

satisfying for a continuous potential V( y) the PDE

�q f (q, y)= & 1
2 �2

y f (q, y)+ 1
2 ;x(q)(�y f (q, y))2 (3.13a)

f (1, y)=V( y) (3.13b)

The fact that f denotes the free energy (2.13a) as well as the field f (q, y)
should not cause misunderstandings. Equation (3.13a) with initial condition
ln 2 cosh ;y has been discovered by Parisi(29) while studying the Sherrington�
Kirkpatrick model.

If the potential V( y) is not continuous, the PDE (3.13) holds only
from any q*<1 onward where ln �(q*, y) is continuous in y. In the
generic case such is qR , so the evolution along the first plateau from 1 to qR ,
where x(q)#1, is to be done explicitly as

f (qR , y)=&
ln �(qR , y)

;xR+1

=&;&1 ln | Dz e&;V( y+z - 1&qR) (3.14)
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and for q<qR the PDE (3.13a) with the initial condition (3.14) can be
used. As a further alternative, one can introduce the field m(q, y) as

�(q, y) m(q, y)=&
�y �(q, y)

;x(q)
(3.15)

which equals �y f (q, y) when continuity in y holds. Then the PDE (3.13a)
should be replaced by

�q f (q, y)=&1
2 �ym(q, y)+ 1

2 ;xm2(q, y) (3.16)

while the initial condition (3.13b) can be kept.
Finally we obtain the sought free energy term (2.13d) as a functional

of the order parameter function

fe[x(q)]= lim
n � 0

1
n

fe(Q)= f (0, 0) (3.17)

It should be emphasized that the above PDEs do not require infinite
refining of the partition by qrs of the interval (0, 1). They are valid for dis-
crete as well as continuous replica symmetry breaking schemes, i.e., they
admit x(q) with steps and plateaus, as well as strictly monotonically
increasing continuous segments.

The entropic term (2.13c) can also be cast in the form of the energy
term (2.13d) with the substitution

e&;V( y)=- 2? $( y) (3.18)

If we conceive the Dirac delta as a Gaussian with small variance, the initial
condition (3.13b) becomes a quadratic function and the PDE (3.13a) can
be solved analytically. The analogue of (3.17) for the entropic term, after
going with the variance to zero, can be cast into

fs[x(q)]= lim
n � 0

1
n

fs(Q)=&
1

2; |
1

0
dq _ 1

D(q)
&

1
1&q& (3.19)

where

D(q)=|
1

q
dq� x(q� ) (3.20)

The free energy of the neuron is then obtained as

f =max
x(q)

f [x(q)] (3.21)
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where the free energy functional is

f [x(q)]= fs[x(q)]+:fe[x(q)] (3.22)

with fs and fe defined in Eqs. (3.19) and (3.17). It is due to the n � 0 limit
that the maximization in (3.21) replaces the minimization by the matrix
elements of Q in (2.13a), see, e.g., ref. 6.

4. LINEAR RESPONSE THEORY, STATIONARITY
CONDITIONS, AND EXPECTATION VALUES

The least obvious part of the extremization condition (3.21) is the
variation of f (0, 0) by x(q). This can be calculated from linear response
theory for the PDE (3.13a). Moreover, linear response theory yields a
technique to calculate replica averages as introduced in (2.15), essential for
the evaluation of physical quantities.

The Green function for the PDE (3.13a) can be introduced formally as

G(q1 , y1 ; q2 , y2)=
$f (q1 , y1)
$f (q2 , y2)

(4.1)

whence G(q1 , y1 ; q2 , y2)=0 for q1>q2 . The Green function for the Parisi
solution of the Sherrington�Kirkpatrick model has been studied in refs. 30
and 31. In the fore and hind variable pairs the Green function G(q1 , y1 ;
q2 , y2) satisfies the respective PDEs

�q1
G=& 1

2 �2
y1

G+;x(q1) m(q1 , y1) �y1
G&$(q1&q2) $( y1& y2) (4.2a)

�q2
G= 1

2 �2
y2

G+;x(q2) �y2
[m(q2 , y2) G]+$(q1&q2) $( y1& y2) (4.2b)

where m is given in (3.15). The first equation without the Dirac delta
excitation is the linearization of the PDE (3.13a). The minus sign of the
Dirac deltas follows from the fact that (4.2a) evolves towards decreasing
``time'' q. The homogeneous part of (4.2b) is obtained from the requirement
that

G(q1 , y1 ; q3 , y3)=| dy2 G(q1 , y1 ; q2 , y2) G(q2 , y2 ; q3 , y3) (4.3)

does not depend on q2 , and the plus sign of the inhomogeneous term is due
to the fact that evolution goes towards increasing q. The homogeneous
parts of the two PDEs (4.2b) and (4.2b) are called adjoint to each other.
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For the sake of simplicity we gave formula (4.1) for the case of con-
tinuous potential V( y). If the potential is discontinuous then the definition
(4.1) should and can be appropriately modified when a q-argument is
near 1, but the PDEs (4.2) for the Green functions hold as they are.

The significance of the Green function is in that it helps to solve the
linear PDE with the source term h(q, y)

�q�(q, y)=&1
2 �2

y�(q, y)+;x(q) m(q, y) �y�(q, y)+h(q, y) (4.4)

as

�(q, y)=| dy1G.(q, y; 1, y1) �(1, y1)&|
1

q
dq1 | dy1G.(q, y; q1 , y1) h(q1 , y1)

(4.5)

A prominent role will be played by

P(q, y)=G(0, 0; q, y) (4.6)

which solves the PDE (4.2b) with q1= y1=0, i.e., with initial condition

P(0, y)=$( y) (4.7)

This function first appeared in the context of the Sherrington�Kirkpatrick
model in ref. 32. Note that the PDE for P(q, y) is in fact a Fokker�Planck
equation, producing a nonnegative solution and conserving the norm
� dy P(q, y)#1 for all qs. This suggests the intuitive interpretation of
P(q, y) as probability density of y.

Now we are in the position to calculate the variation of the free energy
functional (3.22). As to the energy term (3.17), by varying the functions
f (q, y) and x(q) in the PDE (3.13a) one obtains (4.4) with �=$f, �(1, y)
=0, and h= 1

2 ;(�y f )2 $x. Hence (4.5) gives at q=0, y=0 the sought
$f (0, 0)�$x. The variation of fs[x(q)] can be calculated straightforwardly,
and, with the notation (4.6), we arrive at

F(q, [x(q)])=
2
;

$f [x(q)]
$x(q)

=|
q

0

dq�
;2D(q� )2&: | dy P(q, y) m(q, y)2 (4.8)

The stationarity condition in case x(q) can be freely varied is thus

F(q, [x(q)])=0 (4.9)
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If in an interval I the x(q) is supposed to have a plateau, we differentiate
by the plateau value of x(q) to get

|
I

dx F(q, [x(q)])=0 (4.10)

In isolated points qr where plateaus meet (4.9) should hold pointwise. This
summarizes the stationarity conditions for an arbitrary order parameter
function, i.e., arbitrary replica symmetry broken scheme of Parisi type.

We have seen in Section 2 instances when the double, thermal and
quenched, average could be replaced by the replica average (2.15). Replica
averages can be calculated by the Green function technique as described
below. The procedure can be viewed as the generalization of the ground-
breaking results from refs. 30 and 33, where the local magnetization and
some of its moments in the Parisi phase of the Sherrington�Kirkpatrick
model were evaluated.

A simple case is when ((A( ya))) is to be calculated for an arbitrary
function A( y). Because of the symmetry with respect to the permutation of
single replica indices we have ((A( ya))) =((n&1 �n

a=1 A( ya))). This quan-
tity can be easily evaluated if one replaces in (2.13d) V( y) by V( y)+*A( y),
thus obtains fe(Q; *), and calculates its initial slope at *=0. Reversing the
limits n � 0 and * � 0 then using the first equality of (3.4) and Eq. (3.17)
we get

((A( ya))) = lim
n � 0

1
n

�fe(Q; *)
�* } *=0

=
�f (0, 0; *)

�* }*=0

=| dy
$f (0, 0)
$f (1, y)

A( y)=| dy P(1, y) A( y) (4.11)

The third equality comes from the fact that * is in the initial condition for
f (q, y) at q=1, and the last one comes from the definitions for the Green
function (4.1) and for P(q, y) (4.6). Again, for the sake of brevity we gave
the derivation for continuous potential V( y), however, the result holds also
for discontinuous ones. Immediately follows from (2.16) the formula for the
probability density of the local stabilities

\( y)=P(1, y) (4.12)

and thus from (2.17)

==| dy P(1, y) V( y) (4.13)
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From the practical viewpoint interesting are effective averages of
products like

((A1( ya1
) A2( ya2

) } } } Ak( yak
))) (4.14)

One can show by using elementary properties of the Fourier transforma-
tion that the average of a product of xas over the effective Boltzmann
weight on the r.h.s. of (2.13d) can be expressed as averages over functions
of variables yas. Thus the knowledge how to evaluate (4.14) also resolves
the problem of averages of polynomials in xa s. The latter quantities are of
importance because they appear when the replica free energy is differen-
tiated in terms of qab s.

Here we shall only describe the recipe for calculating (4.14), details
can be found in ref. 27. If k=2 then the average depends on q=qa1a2

and
is given by the formula

C12(q)=((A1( ya1
) A2( ya2

)))

=| dy dy2 dy3 P(q, y) G(q, y; 1, y1) G(q, y; 1, y2) A1( y1) A2( y2)

(4.15)

Of such type is �fe(Q)��qa1a2
where A1( y)=A2( y)=i } m(1, y), see (3.15)

for definition, whence we obtain the second term in F(q, [x(q)]) given in
Eq. (4.8). This is related to the fact that the stationarity condition can also
be obtained by first differentiating the replica free energy (2.13b) by qab and
then equating the result to zero. For k=3 suppose without restricting
generality that

q=qa1a3
=qa2a3

<q� =qa1a2
(4.16)

Then we have

C123(q, q� )=((A1( ya1
) A2( ya2

) A3( ya3
)))

=| dy dy� dy1 dy2 dy3 P(q, y) G(q, y; 1, y3)

_G(q, y; q� , y� ) G(q� , y� ; 1, y1) G(q� , y� ; 1, y2)

_A1( y1) A2( y2) A3( y3) (4.17)

Special versions of the above formulas, for the case of the second and third
moments of the magnetization in the Sherrington�Kirkpatrick model, were
worked out in refs. 30 and 33. The integrals in (4.17) admit a simple
graphic representation as shown on Fig. 1.
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Fig. 1. Correlation function C123(q, q� ). The right endpoints correspond to the functions to
be averaged and lines are Green functions (only one of them is labeled by G in the figure).
All nodes, including the right endpoints, have ys which should be integrated over. The
leftmost line is the function P(q, y), or equivalently, this line is also a Green function and a
$( y) is associated with the leftmost endpoint.

The cases considered above are the effective average for k=1, given by
Eq. (4.11), represented by one line, and for k=2, as calculated in (4.15),
represented by a fork with one handle and two branches. Averages of more
than three functions can be analogously constructed, for a given k a graph
has k+1 ``legs.'' Obviously there are two topologically possible graphs for
k=4, depending on the overlaps qai aj

, and more for larger ks.
The ability to calculate k=4 effective averages allows us to study

linear stability of the replica free energy (2.13b) at the stationary Q. Using
the results of ref. 34 on ultrametric matrices we expressed the so called
replicon eigenvalues in terms of Green functions. While a general proof of
the fact that there are no negative eigenvalues in the case of continuous
replica symmetry breaking, i.e., when x(q) has a continuously increasing
segment, is not available, in the high temperature limit(24, 27) we confirmed
the absence of linear instability against replicons whenever we encountered
such a stationary state. For any temperatures we recovered analytically the
zero eigenvalues, corresponding to Goldstone modes, as well as the lowest
order Ward�Takahashi identities predicted by algebra.(35)

The generalization of (4.14) to non-factorizable functions is straight-
forward. For example, such functions would simply replace the products of
Ak 's in (4.15) and (4.17).

5. LOW TEMPERATURE RESULTS

In ref. 24 we have shown that in the high temperature limit, i.e., for
:, ; � � with #=:;2 finite, the problem simplifies to the extent that if x(q)
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has a continuously increasing segment, this can be given in a closed
analytic form. In that limit the problem becomes equivalent to the spheri-
cal, multi-p-spin interaction spin glass, (36) where a similar observation has
been made. Four different phases have been found(24) for the error counting
potential (2.7): for small # replica symmetry holds, and for |}|<2 and
large # there is a Parisi phase with a single continuously increasing segment
of x(q) between the trivial plateaus x#0 and x#1. When |}|>2 there is
also a narrow one-step replica symmetry broken regime, and for large
enough #s equilibrium is characterized by an x(q) that is a concatenation
of a nontrivial plateau and a continuously increasing segment. While for
T>0 there cannot be error free storage, it is plausible to conceive the
replica symmetric regime as the continuation of the T=0 phase of perfect
storage and the symmetry broken phases as the analog of the regime at
T=0 beyond capacity.

In the case of a V( y) potential that vanishes for y>} the limit of
capacity is given for }�0 at T=0 by(4)

:c(})=\|
}

&�
Dt(}&t)2+

&1

(5.1)

as it follows from the replica symmetric solution when q � 1. This formula
also gives the limit of the de Almeida�Thouless (AT) local stability(28) in
the case of the potential (2.7). For }=0 one has :c=2, and, for increasing
}, :c(}) understandably decreases. As it has been already mentioned,
beyond capacity none of the finite-step replica symmetry breaking schemes
gives a locally stable equilibrium state. (19) Thus in this regime the order
parameter function is no longer of the step-like form of (3.8), rather it has
a continuously increasing part. This makes it necessary to numerically
solve the extremization problem (3.21).

The ground state (T=0) has its special scaling properties. The PDE
(3.13a) stays meaningful if for q<1 the function ;x(q) does not diverge,
implying that x(q) goes to zero. Given the meaning of x(q) as the probabil-
ity of a q being in the interval (0, q), (6) we can say that at T=0 the overlap
q is 1 with probability 1 for all :>:c . Nevertheless, a physically meaning-
ful order parameter is obtained after scaling by ;. Firstly we introduce for
T>0 the parameters of the classic Parisi shape as

x(q)#0 if 0�q<q(0)

x* (q)>0 and x(0)<x(q)<x(1) if q(0)<q<q(1) (5.2)

x(q)#1 if q(1)<q�1
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The scaled quantities

q(t)=q(1)&(q(1)&q(0))(1&(1+q(1)) t+q(1) t2), 0�t�1 (5.3a)

!(t)=;x(q(t)) q* (t) (5.3b)

'=;(1&q(1)) (5.3c)

2(t)=;D(q(t))=|
1

t
!(t� ) dt� +' (5.3d)

are expectedly regular even in the T � 0 limit, when q(1) � 1. Note that
there is an arbitrariness in the parametrization by t, the main features
being that q(0)=q(0) , q(1)=q(1) , and q* (1)=0. With this parametrization
the PDE (3.13) becomes

�t f (t, y)=&
1
2

q* (t) �2
y f (t, y)+

1
2

!(t)(�y f (t, y))2 (5.4a)

f (1, y)=&
1
;

ln | Dz e&;V( y+z - 1&q(1)) (5.4b)

For T=0 the initial condition becomes

f (t=1, y) |T=0

1 if y�}&- 2'

=min
y� \V( y� )+

( y& y� )2

2' +={ (}& y)2

2'
if }&- 2'� y�} (5.5)

0 if y�}

where (2.7) was substituted to get the second equality. By Gaussian
integration hence the replica symmetric solution can be obtained.(4, 12, 25)

Note that f (t=1, y) is a continuous function even though V( y) is the step
function. Although we used the same symbols for functions of q and t, mis-
understanding are avoided by our marking which argument we mean.

The PDE for P(q, y) follows from the definition (4.6) and from the
evolution equation of the Green function (4.2b). The latter can be properly
rescaled according to (5.3), yielding in principle the solution P(t, y). The
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probability density of local stabilities is obtained by evolving P(t=1, y)=
P(q=q(1) , y) to P(q=1, y). At T=0 with (2.7) we have

\(2)={
P(1, 2) if 2�}&- 2'

0 if }&- 2'<2<}

P(1, 2)+$(2&}) |
}

}&- 2'
dy� P(1, y� ) if 2�} (5.6)

where P(1, 2)=P(t=1, 2) is understood. For arbitrarily small T>0 the
gap in the support of \(2) immediately vanishes. For details we again refer
to ref. 27.

The numerical extremization was done with complementing the free
energy functional (3.22) by constraints. The PDE (5.4) was added giving
rise to a Lagrange multiplier field. This field can be shown to be just
P(t, y), see refs. 24, 27, and 31. Further technical requirements are x(q(0))
�0, x(q(1))�1, and x* (q)�0, which were taken into account by soft

Fig. 2. Scaled order parameter function x(q) for }=0, :=3 at T=0 (solid), T=0.01
(dashed), and T=0.1 (dotted).
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Fig. 3. Density of local stabilities \(2) from theory for }=0, :=3 at T=0 (solid), T=0.01
(dashed), and T=0.1 (dotted).

constraints. A few results for the Gardner�Derrida potential (2.7), with
}=0, :=3, are displayed on Figs. 2 and 3 for various low temperatures.
Note that the point (}=0, :=3) lies beyond capacity, while beyond about
;&1=T=0.2 the RS solution satisfies the AT stability condition.(27)

On Fig. 2 the scaled order parameter function ;x(q) is shown. For
small temperatures the replica symmetric solution is AT unstable, and
we indeed obtain the Parisi form (5.2) for x(q). At q(0) near 0.75 the
functions x(q) jump to zero and remains there as q further decreases. The
upper plateau with x(q)#1 starts at q(1) . The consistency of the scaling
(5.3) is confirmed by our finding at T=0 finite values for ;x(q) if q<1 and
for 'r0.26. Interestingly, the curved segment of ;x(q) does not change
much with increasing temperature, the main effect being the decrease of
q(1) .

The local stability distribution \(2) of (2.16) is displayed on Fig. 3. It
was numerically obtained for T=0 from (5.6) and for T>0 from the
original formula (4.12), with the same parameter values as in Fig. 3. For
the sake of better visibility of the other details, the very high peaks near
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2=}=0 for T=0.1 and T=0.01 as well as the corresponding $-peak for
T=0 have been omitted from this plot. For |2|>3 the curves approach
zero very quickly. A true gap with \(2)=0 to the left of 2=0 develops
only if T=0, while for the positive T-values \(2) is positive albeit small
there. While the gap at T=0 is present in R=0, 1, 2 step replica symmetry
breaking schemes, see refs. 25, 22, and 19 respectively, in all these cases a
jump appears near the lower edge. This can be associated with the ther-
modynamic instability of those saddle points.(37) Our present solution gives
linearly vanishing \(2) at the lower edge, signaling the absence of replicon
instability.(27)

In order to compare theory with practice we performed a medium
scale simulation. The standard Hebbian algorithm was modified by
Wendemuth(38) to provide convergence for negative stabilities. Since we
chose }=1, the final steps during stabilization of a pattern went on with
2>0, so in our case the modification was not essential. The algorithm goes
as follows. Firstly random patterns (2.2) are generated uniformly from an
interval centered about zero and normalized as �N

k=1 (S +
k)2=N, and all

outputs ! + are taken uniformly 1. This does not restrict generality since S +
k

have random signs. The initial coupling vector is set to be proportional to

Jk(0) B :
M

+=1

S +
k (5.7)

such that its Eucledian norm is N. In the t th step of the algorithm one
calculates the local stabilities

2 +(t)=
J(t) } S +

|J(t)|
(5.8)

and selects the least unstable pattern, i.e., the one with the largest
2+(t)<}. Let us denote its index by +0 , whose argument t we omit. Next
one augments the couplings as follows. If 2 +0(t)>0 then

J(t+1)=J(t)+*S +0 (5.9)

and if 2 +0(t)<0 we have following Wendemuth

J(t+1)=J(t)+* \S +0+J(t)
N�|J(t)|&2 +0(t)

|J(t)|&2 +0(t) + (5.10)

Here * is the gain parameter, the overall scale of increments of J. In ref. 38
the gain parameter was *=N &3�2, after experimentation we chose *=N &1.
Such an increase in the gain parameter did not endanger, rather sped up
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convergence. At time t+1 we again look for the least unstable pattern, and
so on. The algorithm goes on until it gets stuck with one pattern that we
are not able to stabilize in a reasonable time. The intuitive idea behind the
algorithm is that since an unstable pattern counts as error irrespective of
the distance of the stability parameter 2 + from }, one assumes that it is the
easiest to stabilize the pattern with 2 + closest to }. So one may hope that
thus the largest possible number of patterns can be stabilized.

The program ran on 28 PCs in parallel, each having an AMD K6
processor of 333 MHz, during about one day. Figure 4 shows both the
theoretical curve and the results of the simulation for :=}=1, a point
known to fall beyond the capacity curve (5.1). The full line is the result of
numerical extremization of the free energy functional in the way Fig. 3 was
obtained. The Dirac delta peak of the theoretical probability density at }
is not illustrated. The discontinuous lines represent the histograms for the
local stabilities from simulation for two sizes, M=N=500 and 1000, after
normalization.

Fig. 4. Density of local stabilities \(2) at :=}=1, axes as in Fig. 3. The theoretical predic-
tion is given by the full line. The two empirical densities are normalized histograms, taken
with M=N=500 and 1000.

700 Gyo� rgyi and Reimann



The closeness of the two histograms demonstrates that size effects were
probably not the cause for the systematic difference between theory and the
numerical experiment. A possible ground for the discrepancy is that the
algorithm may have been halted prematurely. However, the time necessary
for the stabilization of patterns was allowed to grow for each subsequent
pattern, and the algorithm was ended only when stabilization did not occur
even within the multiple of such an extrapolated time. Another possible
reason for the deviation may be that the algorithm got stuck in a ``local
optimum'' without being able to globally maximize the number of stable
patterns. In this regard several modified initial conditions were tested but
the number of stabilized patterns did not grow in the end. A source of con-
cern can be that the built in random number generator of the C compiler
was used; we did not test other routines for this purpose. As to the algo-
rithm, despite its intuitive appeal, there is no proof that it would be able
to globally minimize the Hamiltonian (2.6) with error measure (2.7).
Furthermore, it is likely that with the present parameters the learning task
is an NP-complete problem, (5, 38, 39) thus explaining imperfect convergence.

We emphasize that the results represent a significant improvement
with respect to the earlier simulation in ref. 39. The error per example =
found in ref. 39 is about 0.21, while the present data correspond to 0.15 and
theory predicts 0.1358. Thus the deviation between simulation and theory
has been decreased by 800. That means that we stabilized more patterns
than ref. 39, although, given the difference between the theoretical and
simulation results, we still could not find the global optimum. Further-
more, an important feature of the density \(2) is that it should con-
tinuously vanish, with a nonzero slope, at the lower edge of the gap. This
property is reproduced by the simulation data, in a sharper fashion with
the larger M=N=1000 size, while the value of the edge remains slightly
overestimated.
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